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ABSTRACT 

We indicate how the phase diagrams of lattice gauge theories are 

easily obtainable through real space renormalization techniques of the 

Migdal-Kadanoff transform type. As an illustration, we work out the 

phase boundaries for an SU(2) single plaquette action with variable 

components of spin l/2 (the Wilson form), spin 1 (SO(3)), and spin 3/2. 

In this three-dimensional space , we study the renormalization flows for 

the couplings, thereby determining the infrared stable forms of the 

action. We discuss their dependence on the phase boundary and their 

import to the continuum limit of the lattice theory. 
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I. INTRODUCTION 

'Ihe extraction of physical information from lattice gauge theories 

is complicated by the nontrivial phase structure recently observed in 

the space of alternative actions. Specifically, without altering the 

naive continuum limit of the theory, one may define single plaquette 

actions which contain varying components of the Wilson action (i.e. the 

trace of the fundamental representation of the gauge group) as well as 

additional higher representations. For the SU(2) gauge theory, Bnanot 

and Creutz' have observed through Monte Carlo techniques an interesting 

first order phase boundary in the space spanned by the Wilson action and 

the adjoint action [SO(3)1. 'hey have also noticed an alarming 

variability of Alattice, emphasized and discussed in further papers. 334 

lhere is another method for establishing the phase structure of 

alternative actions, which, unlike Monte Carlo, addresses the 

significance of the phase boundaries to the renormalization process, by 

its very nature. In addition, it is not inherently limited by finite 

lattice sizes. lhe method relies on the real space renormalization 

group transformations proposed by Migda15 and extended by Kadanoff, 6 and 

Martinelli and Parisi. lhe renormalization recursions available so far 

are inexact for more than two spacetime dimensions: they project the 

effective action relevant to a larger scale lattice obtained by each 

recursion onto the space of single plaquette actions. Even though the 

most general plaquette action is accommodated in that space, the 

nonlocal terms induced in the renormalization process' cannot be 

included without drastic losses in computability.7 
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In this paper, we point out that the Migdal recursion technique, 

even though it is known to miss the order of the phase transition 

investigated in most cases, 5,6,7,9 provides a fast and efficient method 

to obtain the critical couplings, and hence the phase diagrams in which 

one is interested. Because these phase diagrams can be obtained with a 

small fraction of the computer time required for a Monte Carlo study of 

the same action, it is possible to study alternative actions of greater 

complexity. We illustrate this by particularizing to the SU(2) lattice 

pure gauge theory in the space spanned by a Wilson action component 

(spin l/2), an adjoint component (spin 11, and a spin 3/2 component, 

parameterized by their relative inverse couplings 8FZ&c,, B,sc A' and 

i33-5c 
3' 

respectively. We have been considerably aided in our analysis 

by the study of the pure Wilson theory through this technique by 

Nauenberg and Toussaint' (also see Ref. 10). 

After iterating the renormalization recursions a large number of 

times to find the effective single plaquette action pertaining to a 

lattice with correspondingly larger spacing, we can perform the 

functional integral to a good approximation (Sec. II). Having thus 

obtained the free energy density, we may differentiate with respect to 

the appropriate inverse coupling 8 to obtain the intensive thermodynamic 

functions of the theory, like the energy and the heat capacity. 

Identifying the location of the heat capacity peak with the critical 

cowling 8,, we obtain the phase boundaries for the positive B,, B&33 

octant of the manifold studied here (Fig 1). 

In the 8,-B, subspace of that diagram, it is rewarding to find 

striking agreement with the Monte Carlo results for that 

region'(Fig. 5). lhe extended phase boundary is a roughly flat surface 
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which connects this boundary to a similar structure we find in the 8,-B3 

subspace (Fig. 6). Several of its interesting features are conveniently 

located through an analysis of the single plaquette classical minima 

(SPCM) for the action (Appendix A). We find that, in agreement with the 

observation of Bachas and Dashen," some of these phase transition 

features appear not to be underlied in any way by the center Z2 of the 

group. 

As mentioned, the correct order of the phase transition cannot be 

established by the Migdal technique. (In fact, part of the first order 

phase boundary is seen here as third order.) lhus, in general, such a 

study of a phase boundary can be usefully supplemented by very few Monte 

Carlo runs. 

Since the method discussed relies on the renormalization prcoess of 

the single plaquette action, it is relatively easy to monitor the 

evolution of the effective action with increasing lattice spacings 

(Sec. 4). We do this by fitting its functional form to components of 

spin l/2, 1, 3/2, and 2, the last one serving as an indicator of the 

degree to which the effective action has "leaked out" of the space in 

which it was defined. 

We find very little leakage, with some special exceptions. All 

renormalization trajectories of the couplings avoid the phase boundaries 

and terminate at the origin 8F.8A=83=8i:0 (Fig. 8). However, if they 

happen to start from regions separated from the origin by phase 

boundaries (e.g. WVX in Fig.11, they do not cross them. Instead, they 

develop a comparatively large component of spin 2 (and perhaps higher 

spins), and approach the origin through a window, which appears to be 

present in the manifold which includes spin 2 or higher. 
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A similar, more standard, approach to the origin through a phase 

boundary window which we have mapped out is evident in Fig. 8. It can 

be seen that, regardless of their point of origin, the trajectories are 

attracted to and eventually coalesce with either of two stable fixed 

lines. lhese lines are located along the SO(3) axis 8,, and, more 

usually, the Wilson action axis BF, with a 16% negative component of 8,, 

respectively. In addition to representing the universal limit for long 

distances of the various bare alternative actions defined on a lattice 

with very small spacing, these universal fixed lines suggest the path of 

fastest approach to the continuum limit, since they appear to etiibit 

markedly improved scaling behavior, in comparison to other trajectories 

with even smaller continuum couplings (Sec. V). 

A brief discussion of alternative recursion formulas and lattice 

spacing increments is provided in Appendix B. 

II. DESCRIPTION OF THE MIGDAL RECURSION TECHNIQUE 

We briefly review the Migdal transformation formalism. To the 

extent convenient, we try to align our notations and conventions with 

those of Nauenberg and Toussaintg who study SU(2) with a Wilson action 

in somewhat greater detail than Migdal's original treatment.5 

me central 

euclidean lattice 

object studied is the functional integral of a 

gauge theory: 

%= s sd~,i.+~ eMT4(lrp+) (2.0 

where U 
P 

denotes the product of Ulink*s along the perimeter of the 

plaquette and a is the lattice spacing. 



-6- FERMILAB-Pub-82/39-THY 

me gauge invariant one plaquette action Sp(U,a) is a class 

function, i.e. it does not depend on the degrees of freedom of U which 

can be'gaugedl'away: it is completely determined by those specifying the 

equivalence class of U. A complete expansion basis for a general class 

function is the set of characters of the group. 'Ihe character x,(U) is 

the trace of U in the irreducible representation indexed by r. Since U 

is unitarily diagonalizable, the character is the sum of its 

eigenvalues. Tne dimensionality of the representation is dr = ~,(a. 

me identity (singlet) representation is denoted by r z 0. 

Given a group invariant integration measure, dV, normalized so that 

dV = 1, the complete set of characters constitutes an orthonormal basis 

by virtue of the relation: 

1 r AV x,(w) ~~cw+v> = 2 3Cr(W ‘) &z) b- 
analogous to the orthonormality relation for finite groups. We thus 

character expand the exponential of the single plaquette action: 

e -qc”a+L zg ~Cd k, 7JL,(u) 

l+l = I_ 
& I 

-spcu,4 
du e %:a) (2.j) 

If one decimated a number of the links in (2. 1) by performing the 

group integrals over the appropriate links so as to end up also with a 

hypercubic lattice, the resulting exact effective action would not, in 

general, in terms of a sum over single plaquettes. 
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However, Migda15 has proposed the following renormalization which yields 

an effective single PlaqUetie action Sp(U,Xa) - in general different 

from Sp(U,a) - on a lattice whose spaoing is scaled up by a factor X 

(not necessarily integral). For more than two spacetime dimensions, the 

transformation is inexact, since it does not generate interactions more 

complex than the general single plaquette interaction. 5-8 Nonetheless, 

it is believed to preserve the essential features of the dynamics of the 

system. It reads: 

-S,CW~ k-2 

e = [T QJ d., x&J I3 (-2) 

d is the dimensionality of spacetime; for d = 2 the transformation is 

exact. Motivation and assessment of the performance of this 

transformation and its variants -discussed in Appendix B. We find 

below that it provides a fast and efficient heuristic description of the 

system. 

Migdal's transformation(2.5) reduces to the identity for 1 E 1, as 

it should, and, in practice, two successive transformations by x are not 

precisely equivalent to one by i2. Upon N iterative transformations of 

this kind performed numerically, we may monitor the evolution of the 

functional form of Sp(U,hNa) and thus study the renormalization of the 

action with an increase of scale. This we do in Sec. IV. 

After a large number of tranformations, volume effects in each cell 

overwhelm boundary effects - the integral (2.1) virtually factorizes, so 

that each large plaquette may be readily integrated over independently 

of its neighboring ones. me free energy per plaquette is then 
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r = s-& $$ ,where 
AJ+oo 

z= .$ &+I czo (A”-> (2.6) 

From the computational standpoint, when iterating (2.5) 

numerically, we wish to avoid taking logarithims of very large or very 

small numbers in (2.6). To this end, we normalize after every 

iteration, following Ref. 9 

C$) s pi) /ppca+-Q 
(2.7) 

/q (0,. z q, CvZ&, ~~Iu),~~1-~~u~3ta~~:saa) 

(24 81 

5;‘$ -Sp(*,a) +g $-- mk$q +$cl~ 4iN 
N w--o 

which converges rapidly in N. 

We proceed to apply this formalism to SU(2). In SU(2), the 

characters are all real and the representation index is just the spin. 

Since the rank of the group is 1, they depend on only one angle 8 

(oorresponding to the azimuth C$ of the Lx eigenfunctions). An arbitrary 

element U of SU(2) is unitarily diagonalizable to a (2r+l)x(2r+l) 

unimodular matrix whose eigenvalues sum to: 

pp) =; d”: per-\ . . . +eitir-: &key siY+iiti*;>e/, 

( v=o, $5, 1>y2, .*. 1 ci,=~BJ=Zr+) 
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Even in the absence of the above closed form (as would be the case 

for higher groups) the character of the fundamental representation 

x,,,(U) I 2 cos 8/2 may be Kronecker-multiplied with itself to decompose 

into the standard sums of all higher irreducible representations 

(addition of angular momenta). Naturally, all such character identities 

reduce to the dimensionality formulas at the identity (U=&i.e.e:O): 

W) == qlJ> %,,(~I -X&J) s 2 f&Q + 1 

25--p = &C&J) gqql - ;“cJJ) 5 ~(w3& $-ma) 
=4cbBd@/z 

%2 04 5 %5,&@) * Jg- mu) = 

, etc.... 

In this paper we will restrict ourselves to an initial single 

plaquette action consisting of linear combinations of spin l/2 (Wilson 

form), spin 1 [the SO(3) action], and spin 3/Z, parameterized as 

follows: 
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s,--L@6@-2) + p, ~,~v~-3) t/g%4pJ) -41 @.IZ) 

We may further suppress the overall constant normalization terms, 

since shifting the plaquette action by a constant does not affect the 

specific heat we will be computing:* 

-qQ-Q= 2 C&M@h +p4 &se +zp~ ccdBrsJ%J~ 

me bare coupling of the continuum field theory is read off from 

the coefficient of the o2 in the above action Co2 is proportiona&? to the 

trace of the field strength squared): 

(3 +=$- +ZpA+V% 
*Note that cur couplings are normalized differently from Ref. 1 and 

Ref. 3, i.e. 
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'ihe Haar measure in this parameterization is: 

so that the character (t'Fourier") coefficients(2.4) are readily given 

by: 

- SC%a%) 
sinz9f2 e &r@) 6.16) 

"ihe reader may note that this measure identifies the x,(8) with the 

(hyperspherical) Gegenbauer polynomials $,(cos8/2). 

We may thus compute the dependence of the family of functions 

S(O,XNa) on N, given a triplet of values (BF,BA,83) : 8(cF,cA,c3). In 

the large N limit we obtain the free energy density;fi(8)(2.6). We may 

then take successive derivatives with respect to 8, to obtain the 

average plaquette action <s/8> and its variance, the specific heate: 

e=fcg-i = @%2> -<sb)z) bo 
Note that G is independent of the absolute normalization of 8. In a 

first order phase transition e(8) should be singular like a &function 

at 8 C' while it should be discontinuous in a second order transition, 

its slope should be discontinuous in a third order transition, etc. We 

study e(8) for several ValUes of (c o c ) with special attention to 
F’ A' 3 

such strut ture. 
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III. THE PHASE STRUCTURE OF SU(2) IN A THREE DIMENSIONAL 

SPACE OF ACTIONS 

Starting with the action (2.13), we perform a number of Migdal 

transformations until rN converges to a constant. we take X z 1.1, 

which is a priori reasonable since it reproduces the known13 critical 

coupling of the SO(3) phase transition fairly well (V on Fig. 1). In 

Appendix B we discuss the variability of our results with A or with 

using alternative recursion formulas. We keep 20 characters in the 

expansion (2.3), since we have not encountered nozero coefficients for 

rz20. Convergence takes typically from 20 to 150 iterations, 

corresponding to scaling up by a factor X2'=6.7 to X15o=l.6xlO6, 

respectively, depending on the point $=$z8(cF,oA,c3) studied. 

We run along rays of fixed 8 5 (c ~,c~,c~), varying 8 sequentially 

by Aa = .Ol to obtains(8). We then differentiate once to obtain the 

average plaquette action (2.171, and once more to obtain the heat 

Capacity cc8)(2.18). Sample shapes of these curves are provided in 

Figs. 2, 3, 4. Although the phase transitions on the (cF,cA,O) are 

known to be first order from Monte Carlo' studies, we find no 

discontinuities in the average plaquette action; this comes as no 

surprise, since, due perhaps to the implicit averaging of links 

involved, the Migdal technique is known to often miss the correct order 

of a given phase transition. 5,6,7,9 In fact, the most singular behavior 

observed in our study has been cusps in the specific heat which, taken 

at face value, would signal a third order phase transition. 

Nevertheless, as also observed in the past, 516 the critical coupling of 

a phase transition is predicted fairly accurately through the Migdal 
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technique: the centers of the e peaks on the (oF,cA,O) plane fall 

remarkably close to the phase boundary established by Monte Carlo 

techniques - see Fig. 5. 

We thus perform 46 radial runs whose results are given in Table 1. 

We indicate the location of the C peak, its height, and its shape (i.e. 

whether it is a cusp: x, a peak: o, or a very wide bump: U. A slash: / 

separates two peaks on the same radial run (see Fig. 4). (In two runs 

the peak required by continuity from nearby points falls outside our 

running range.) 

On the basis of the regularities of our results and some 

theoretical guidelines provided by considerations of Single Plaquette 

Classical Minima" (SPCM, see Appendix A), we have chosen our points to 

cover the regions that appear to have the most interesting structure. 

me phase boundary in the octant studied emerges as on Fig. 1, which we 

proceed to describe and discuss. 

lhe 18 runs performed in the 8,-B, plane reproduce the SO(~) - 

SU(2) phase diagram (Fig. 5) already available from Monte Carlo 

studies. 1 As the slope CA/cF is increased, the very wide, low bumps turn 

into higher narrow peaks (Fig. 4) - the highest one is at B : 

(.35,.69,0). Although we observe a swift narrowing of the peaks from if 

: (1,.25, 0) to 2:': (1, .30, 0), we cannot locate the critical endpoint 

as precisely as the Monte Carlo study:' 3 = (0.74,0.30,0). In any case, 

by comparison to this study, we will be interpreting wide bumps (U) of 

this type to signal the absence of a phase boundary, while the peaks (0) 

and cusps (x) will be interpreted to demarcate a first order boundary. 
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With increasing slope, we observe the peak separating itself past 

the triple point W: 3 q (.29,.79,0) into a peak and a cusp (Fig. 4). 

This bifurcation of the phase boundary is dictated by consistency with 

the well. known SO(3) phase transition l3 V on the 8A axis, and the Z2 

transition 9, at the self-duality value 8, = 2.22 5,14 and sufficiently 

large 
8,. Large 8, freezes out all degrees of freedom except those in 

the center Z2, viz. u = +n*e-*wr,o. 

Following Bachas and Dashen 11 we observe that the window in the 

phase boundary is almost exactly in that region of the plane (BOF) in 

which there are no nontrivial SPCM's - see Appendix A. To the left of 

OB there is alays one minimum in addition to the vacuum, corresponding 

to the center element U = -1. 

A similar diagram is also obtained throu@? the 10 runs covering the 

B3-BA plane (Fig. 6). lhe peak-cusp structure for larger 8, is 

analogous to that observed on the 8,-B, plane, with the Z2 phase 

transition R appropriately scaled downto 83 2 l.llyl$ge 8A, due to our 

normalization (2.13). 

In contrast to the previous triple point W, the triple point 

X-(0,.76,.40) essentially lies on the SPCM line EO (8, = 2.5 B3). 

Significantly, to the left of this line the SPCM's lie in the center Z2 

- this region includes the Z2 phase transition R - while to the right of 

it, the nontrivial SPCM's cease to lie in the center Z2. mis may also 

aocount for the fact that past the triple point the phase boundary is 

demarcated by cusps of increasing height and continues uninterrupted to 

the a3 axis. T has, in fact, the highest cusp observed in our study. 

The reader may wish to contrast this to the point S on the 8, axis, 

where no nontrivial SPCM's exist. 
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The diagram on the BF-B3 plane (Fig. 7) is considerably simpler, 

possibly due to the absence of any underlying Z2 structure. We observe 

the phase boundary TU demarcated by cusps to terminate on, or near, the 

SPCM boundary OD (83 = .50 8,); for higher slopes there are no other 

minima except for the vacuum. In the window SU the cusps turn to peaks 

of decreasing height/increasing width and then rapidly into low, wide 

bumps of the type identified above to signal the absence of a phase 

boundary. 

Given these intersections of the phase boundary surface with the 

three planes 83=0,8F=0, and 8,:0, we perform 13 more runs to obtain a 

consistent picture of this surface (Fig. 1). lhe surface appears fairly 

flat (roughly f3,+f3,+B3=l) except for the structure attendant to Z2 to 

the left of the SPCM plane EOB. This plane intersects the surface along 

XYZ, while the SPCM region which contains no nontrivial minima 

intersects the surface along UYZS (see Appendix A). 

lhe region YXTU (which is presumably not controlled by Z2) is 

characterized by cusps. The window enclosed by UYZS contains very wide 

bumps and we therefore do not regard it as a phase boundary. me region 

XZW is typified by narrow peaks and lies within the SPCM region 

dominated by the center. lhe reader may wish to contrast the ray $55: 

(2,1.30,.40) which has a sharp cusp and lies outside the window UYZS, to 

the rays (2,1,0.5), (2,0.5,0.03), and (l,.lO,.lO) which lie inside this 

window and exhibit a peak and very wide bumps respectively (Table I). 

lhe region XZW continues down to WXV, which is also characterized 

by peaks. lhe surface XZW interfaces with the surface QRXW along the 

flat curve WX; the latter surface is characterized by cusps and connects 

to the Z2 phase transition. 
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Finally, motivated by the trajectories dicussed in the next 

section, we ran along the ray (l,-.10,.02) which is very close to the 

major infrared attractive fixed line of actions; the heat capacity is 

extraordinarily flat, with a bump barely discernible. Perhaps 

significantly, the elevation of this bump is the lowest in the entire 

diagram. In this connection, we point out to the reader that the only 

other local minimum in the height ofe in our cctant is located on the 

8, axis, i.e. close to the minor [SO(3)3 fixed line of actions. 

lhe technique illustrated here could be easily extended to study 

the three other octants of the space discussed whose structure is not 

identical to the one investigated; the remaining four are connected to 

these by the symmetry: 8A+8A,8F++F,83++3. 

IV. THE RENORMALIZATION TRAJECTORIES OF THE COUPLINGS 

In order to read off the thermodynamic functions in the previous 

section, points in the (BF,BA,83)space of actions were chosen and then 

the equivalent single plaquette action system on a lattice with spacing 

kNa was obtained through N successive renormalization transformations. 

As the scale of the spacing expands, the single plaquette action 

Sp(8,kNa) differs from the original one Sp(8,a). Not only do the 

renormalized inverse couplings 8 ultimately decrease, but the functional 

form iself of the action Sp(8) varies with N, as a consequence of the 

additional interactions in+oduoed by the renormalization process. 

We monitor this evolution of Sp(8) as follows. Every few 

iterations (2 or 5) we fit exp(-Sp(8,~Na)~pp(C,~Na)) with the 

four-parameter family of functions 
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p+ C&p) -2) + B&,m-3) +J3~3h(ek-4> 4$@&9b5~ 
e c4.0 

through the fitting program MINUIT. Our periodic viewing of the values 

8,,8,,83,8, which best describe the effective action of the system does 

not interfere with the operation of the iteration process or alter the 

renormalization of the action in any way. 

Of all the higher spins which are in general generated throughthe 

renormalization process, we only choose to read off the spin 2 

component, which we parameterize by B4. In most cases (with a few 

notable exceptions) it is relatively very small and it may serve as a 

crude indicator of the amount of the action which "leaks" out of the 

three dimensional space (8F,8A,83) in which we start. 

Table II provides the sequence of inverse couplings for 4 out of 

the 25 sample trajectories studied. With 
"p4 

the exception of the last one, 

all trajectories in the table avoid phase boundaries, and to this end 

sometimes temporarily increase their distance from the origin while 

curving around to flow to the origin through the "window" on the phase 

boundary below Z. lhey are all attracted to a line which represents a 

one parameter family of actions, that is, a universal functional form 

(close to the form of the Wilson action), along which they flow to the 

origin. 5-g 

me last trajectory in Table II starts on the adjoint axis and is 

separated from the origin by the phase boundary VW in the 8F,8A,83>U 

octant. Since half integral spins cannot be produced from spin 1, 

symmetry should constrain every other character to be zero. We could 

thus expect to interpret the 8,,B3 components (which are always c.02) as 
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a rough indication of the aggregate error in our iteration procedure and 

the fitting routine. (Even this trajectory does not cross the phase 

boundary: instead it rapidly develops a spin 2 component (and possibly 

higher ones) and it Veaks" through a window in spin 2 and/or higher 

spins. Even though we have not studied the continuation of the phase 

diagram to the space of higher spins, a window in the ~~-8~ plane is not 

implausible, given the absence of a Z2 phase transition and the boundary 

connecting to it.) We further find that within a smaller region around 

the adjoint axis 8,, all trajectories are attracted to another [SO(3)1 

stable line very close to that axis. 

In Fig. 8 we plot the evolution of the two dominant components 8, 

and 8, for several trajectories starting from points on the 8,-B, plane 

- the OO~pO~S~tS B3 and B4 are usually smaller by at least one order of 

magnitude. me plot illustrates the basic pattern observed in all our 

runs. 

Trajectories curl around and avoid the phase boundary by going 

through the window below the endpoint Z (or as is the case for the 

trajectory starting at 8,:.1, BA:.9, the window for aF=O, nontrivial B4, 

8.~'~~~ not depicted here). 'lheir approach to the origin is eventually 

along the universal stable lines which lie very close to the BF and the 

8, axes, respectively. me major [.SU(2)] stable line is not entirely 

straight and has an approximate slope of -.l6. We illustrate this on 

Fig. 9, on which the 8, and4 components of three trajectories are scaled 

up by one order of magnitude. mis plot of couplings versus iteration 

number indicates how trajectories coalesce to the stable line. Observe 

that the shape Of the sequence of 8, coefficients is somewhat different 

from that of the ~~~10 sequence, i.e. the stable line is not exactly 
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straight for strong coupling (small 8. See Ref. 8). 

We may observe that, very qualitatively, the trajectories appear to 

flow to regions of decreasing heat capacityc Although we could not 

establish the precise relation of cto a potential of a gradient flow 

for the couplings, it still appears significant that the doubly unstable 

point on the 8,-B, plane (i.e. that point to which no trajectory flows) 

seems to be located near the highest e peak found on this plane: at 

BF=.33, 8,=.72, in the neighborhood of the triple point W. If a line 

were drawn between that point and the origin, it would, together with 

the phase boundary QW, divide the plane into two regions. lhe 

trajectories in the right and left regions eventually join the SU(2) and 

the SO(3) stable lines respectively. As remarked in the last section, 

both of these fixed lines go through Valleys," i.e. regions with 

lowest heat capacity peaks. 

All trajectories we have studied which start from points on the 

octant of Fig. 1 outside the shaded phase boundary eventually curve 

around in occasionally large arcs and reach the origin along the major 

SU(2) stable line. For instance, the third trajectory in Table II, a 

portion of which is plotted in Fig. 1, starts with 8,=0. It rapidly 

develops a large 8, component, curves around near (8.6, -1.1, -.7), and 

flows to the origin with slope s -.I8 to -.16. We discuss the 

significance of these trajectories in the next section. 
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V. DISCUSSION AND CONCLUSIONS 

We have illustrated (in Sec. III) how the phase boundary of a gauge 

theory can be located quickly and efficiently throu& the Migdal 

renormalization technique. Since it requires considerably less computer 

time, the recursion method allows surveying larger multiparameter spaces 

of alternative actions than those routinely accessible to Monte Carlo. 

Our particlar analysis is also facilitated by the study of SPCM's, as 

several special points (X,U,Z) and lines (XZ,ZYU) of the phase boundary 

lie on its intersection with SPCM planes. We may thus agree with the 

observation of Bachas and Dashen" that the topological features 

associated with the center Z2 are not the unique, exclusive feature 

which controls the phase structure of the theory investigated. 

In general, once the phase boundary of a model has been determined, 

it is desirable to supplement the picture by a few Monte Carlo samplings 

so as to specify the order of the phase transition. In the model 

studied here, it does not appear implausible that the entire phase 

boundary is first order, like its intersection with the 8,-B, plane, a 

fact known from previous Monte Carlo' analysis. However, in our 

picture, part of this boundary appears as third order, in agreement with 

the critical exponent uz.66 Of the Z2 limit of the theory (Q, and R of 

Fig. 1), as computed in the Migdal scheme5; the critical exponent of e 

is 2-Vd .x-.64. 

me above critical exponent u controls the repulsive strength of 

the unstable fixed point 7 on the Z2 phase transition boundary, in 

agreement with the pattern of renormalization flows observed in Sec. IV. 

One might object that since the Migdal procedure misses the order of the 
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transition and the oritical exponents, the pattern in which the actual 

renormalization trajectories are affected by the phase boundary might be 

intrinsically different from the one observed in Sac. IV. We choose not 

to argue at length about the degree to which the results of Sec. IV are 

representative of the actual flows: we wish to simply state the features 

observed in the framework of the Migdal approximation, and ask whether 

evidence for these features can be obtained throuefl other techniques, 

including Monte Carlo. Suoh a program appears to us well worth 

pursuing, considering its implioations for the continuum limit. 

Successive renormalizations which produce the effective theory 

applicable to longer distances drive all points in the space considered 

away from the phase boundaries and towards either the SU(2) fixed line 

close to the Wilson axis BF, or else the SO(3) fixed line close to the 

adjoint axis 8, (Fig. I). As a consequence, any point with sufficiently 

small COUpling (large l/g; : 8F/2+28A+583, viz. 2.14) at a small length 

scale will correspond to points on its appropriate fixed line with 

larger coupling at longer distance scales. For instance the points 

around (.65,-.06) in Fig. 8 represent physics defined equally well 

through: an action with (.8,.25) and a lattice spacing smaller by 

l.l13=3.5, an action with (1.91 ,-.25) and a spacing smaller by 

l.12016.7, or an action with (.4,.75) and a spacing smaller by 

1.14'n49.8. Thus points on the fixed line represent the universal long 

distance behavior of the theory. Ideally, in order that the lattice 

spacing be much smaller than the physical object studied, the bare 

coupling of the theory should be defined at very large 

I&‘0 q BF/2+2BA+5B3. However, practical constraints in Monte Carlo 

studies restrict one to relatively small 1/g;. How small can this 
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quantity get without losing agreement with perturbative scaling? 

Let us inspect the first trajectory of Table II, which appears to 

join the SU(2) fixed line fairly rapidly. me effective lattice spacing 

after N iterations is a N = XNa = l.lNa. me lowest order strong coupling 

result for the approach to the origin in the 8,-B, plane is3 

,A II ~1+2P,) z a’ 4” \.I=“’ c-s.9 
cz 

where N is the number of iterations (zeroed arbitrarily). Indeed, the 

logarithm of the 1.h.s. of (5.1) evaluated at the end of this 

trajectory varies almost linearly with N/2, with roughly the expected 

slope. 

In some contrast to the above, the points on the beginning portion 

of the same trajectory are not described as well by the perturbative 

scaling formula: 3 

-\IL;&+4@ +3=b- + k+sp f A 

If we consider the first ten points of trajectory !(x in Fig. 9), gi lies 

between 1.25 and 5.17, fairly large. me left hand side of (5.2) 

evaluated at these points does not vary exactly linearly with N, as 

would be expected for constant A. lhis indicates that these points are 

not yet in the weak coupling regime, or that A is not a constant.3'1 

However, the slope of an eyeball straight fit through them is only 

slightly higher than the slope predicted, which is a familiar feature of 

the 8 functions obtained through Migdal recursions.5rg For smaller 

couplings (e.g. gEc.80) on the SU(2) stable line, we find that scaling 

through (5.2) works quite well. (Also compare to Fig. 3 of Ref. 3, 
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eSpeCially for small negative 8,.) However, several other trajectories 

off the fixed line simply cannot be fit by (5.2), even though they cover 

ranges of lower couplings go. 

We therefore consider it worthwhile to ask whether the SU(2) stable 

trajectory always approaches perturbative scaling faster than 

trajectories with comparable go's, a fact which may have practical 

applications in Monte Carlo calculations. 394 

It appears likely that, even beyond the framework of our 

approximation, the SU(2) universal line (which consists of a small 

negative component of adjoint action superposed to the Wilson action, 

8Ac-.168F,) furnishes the optimal pathway to the contiruum limit. 
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APPENDIX A 

LOCAL MINIMA OF THE SINGLE PLAQUETTE ACTION 

Bachas and Dashen" have observed that the phase structure of 

lattice gauge theories in the manifold of alternative actions is often 

demarcated by those regions of that manifold which contain stable 

classical local minima of the single plaquette action, in addition to 

the trivial one (which corresponds to the vacuum). mey speculate that 

excitations made up of single plaquette configurations condensed in 

these local minima are responsible for the discontinuous change in 

energy characteristic of a first order phase transition. Some, but not 

all, of these minima correspond to the nontrivial element in the center - 

[z2 for SU(2)1, which is associated with the fluxon/monopole 

multiplaquette configurations conjectured to govern the thermodynamics 

of confinement.12 Even thougb this type of analysis does not anticipate 

the full phase structure of our system, we still find it useful in 

locating several nontrivial features in our phase diagram. 

Our classical action: 

is extremized through the condition: 
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me condition for stable minima is 

(A.31 
2% - =&q +2&d + ~(5atms!g -4si*eskQ>~ atP 

In the cotant under study (8F,8A,83;~) there is always a stable 

minimum at the vaouum: 8=0,4n. Moreover, there is always an extremum to 

be found at 8=2s, which corresponds to the nontrivial element of Z2. 

However, it is a minimum only for 

%I -g -5ps )o 

lhe plane EOB of Fig. 1 defined by the equality limit of the above 

(A.41 leaves all center minima to its left. It intersects the 8A-83 

Plane (8,=0) along OE (defined by 8A=5/2 B3); the 8,-B, plane (83=0) 

along OB (defined by 8,=48,); and the WXTS phase boundary (found to be 

roughly planar: BA+BF+B3=l) along XYZ (rou&ly: 

2lB,+10"14B~,B~=l-6,-~~). 

We find that the triple point X of the BA-B3 diagram lies on the 

intersection of OE with the phase surface WXTS, and the well known' 

critical endpoint of the 8,-B, diagram lies very near '1 z, the 

intersection of OB with the same phase surface. 

To the right of the plane GOB, the center element @=2K converts to 

a local maximum, which may well continue to infuence the functional 

integral, and be associated with the wide heat capcity bumps found along 

zs. 
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To the right of the OE on the 8,-B3 diagram, the minimum splits 

into two symmetric canes about 2n, which migrate continuously from 2i7 to 

2 arcos (-l/G) along 

On the BF-B3 plane these minima migrate on with increasing BF/B3 

along 

f3=: 2 -(-vf-.gxg’) ~A-0 
until they reach fll, where they vanish for 8,z2B3 (line OD). 

Ihe region where there can be no extrema at real angles other than 

0 and 4n is determined by the argument of the square root in(A.2): 

fg +-a a- -Q <o 
lhis is the interior of a slanted cone with its apex at the origin and 

an elliptic intersection with the 8, = constant planes: 

($q- + (PJ- BF/q)z = @f/4)= 
This slanted cone is tangent to the EOB planealong the line OG defined 

me @base boundary intersects the cone and this tangent along the curve 

UYS and the point Y [roughly: (0.65,0.30,0.05)1, respectively. 
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Finally, the very small region bounded by GOB, BOF, and the surface 

of the cone does not contain local minima, since both (A.21 solutions 

for cos 9/2 are not L-1 and thus do not correspond to a real angle. 

We have found no local minima structure to account for the location 

of the triple point W. 

lhe minima boundaries thus found demarcate our data points quite 

distinctly: 

a) Points inside the boundary UYZS are characterized by wide bumps - 

and are thought to correspond to no real boundary. 

b) Points to the right of XY outside the cone correspond to remarkably 

sharp cusps. 

c) Points on XZW are fairly narrow peaks. 



-28- FERMILAB-Pub-82/39-THY 

APPENDIX B 

ALTERNATIVE RECURSION FORMULAS 

We remarked in Sec. 2 that Migdal's formula (2.5) is exact in two 

spacetime dimensions (d.2) for X:2. This may be seen directly by 

decimating the lattice, i.e. integrating out all links vihich lie on 

alternative parallel lines of these planes, by use of (2.2). 

Unfortunately, this procedure cannot be extended to lattices of higher 

dimensionality, because the integrals do not yield local, one plaquette 

expressions. Migdal proposes5 to avoid this problem by averaging over 

loops in adjacent planes, after decimating half the links on these 

planes. lhus the effective theory arises as the average of actions in 

adjacent planes which cover the entire lattice. In general, on a highly 

correlated lattice, the error introduced by this averaging should not be 

very large. 6 

Kadanoff6 has proposed a variant of this prescription in which the 

link shifting/averaging precedes decimation. This enables him to gain 

some insight into the accuracy of the approximation. An effort7 to 

improve these formulas systematically by incorporating the nonlocal 

interactions, so far projected out at every step, is too cumbersome for 

our numerical approach. 

We generalize the recursion formula (2.5) through the introduction 

of a parameter b: 

This formula interpolates between the Migdal recipe used here (b=O), and 
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the Kadanoff prescription (b=d-2). me exponent h2 continues the result 

obtained by decimation on a plane (X:2). me exponents Xb and id-2-h 

result from link shifting/averaging before and after decimation 

respectively. One may observe that a succession of several 

transformations (B.1) depends on b only through the first and the last - 

exponents in the nested parentheses of the combined transformation. We 

note below that the variation of our results with b is not dramatic. We 

do not study here successions of variations with alternating b's. 

As remarked in Sec. II, a succession of two transformations with a 

given lattice spacing expansion factor X is not in general equal to one 

with X2, unless A:l. mis, of course, is the reason why we iterate many 

transformations with a A only slightly above 1. (Actually, kc1 can be 

studied as well: throu& the method of Sec. IV, we observed reversed 

flows for X = l/1.10, but, naturally, the series for the free energy 

does not converge.) 

In this study we have worked with X=1.10, because that value 

reproduces the SO(3) critical coupling with the Migdal formula. Once 

this parameter has been chosen, no further adjustments have been made to 

obtain agreement with the Monte Carlo data (Fig. 5). How much would we 

expect the results to vary if no critical coupling were available on the 

outset of our study? 

To discuss this question, we perform some runs on the same ray z : 

(.23,l,O) with variable X and b (see Fig. 10). We note that in the 

Migdal recipe (b=O,Figs.lO a,b,c), the critical 8 and the heat capacity 

peaks increase with increasing X. Even though the location of each peak 

varies by ~10% between X = 1.05 and X = 1.15, the distance between two 

peaks varies by less than 4% in the same X interval. mis is smaller 
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than the error bars for this quantity in the Monte Carlo calculation' at 

the same region. 

In contrast to the above, 8, and the height of the epeaks decrease 

with increasing A for the Kadanoff recursion formula (b=2,Figs.lOd,e,f). 

Even for fairly small A's (e.g. X:1.03 in Fig.lOf) the labile values of 

8, obtained by the Kadanoff prescription are underestimated. lhus, 

since smaller A's require considerably larger numbers of iterations for 

convergence, the Migdal formula seems preferable for our purposes. 

For a given A, the Kadanoff prescription yields lower 8,1s tha" 

those obtained throu@ the Migdal prescription. mis may not be 

surprising, since a succession of Kadanoff transformations with a given 

A is equivalent to a succession of Migdal transformations with the same 

A where the initial 8 is scaled up by Ae2 (in d:4). If, after 

sufficiently many iterations (when the final 8 is very small), the final 

downscaling is less important than the initial upscaling, the heat 

capacity computed by Kadanoff's recursion would correspond to a higher 

Migdal 8. lhis is in fact what is observed: all B,*s observed in the 

Migdal approximation exceed those obtained in the Kadanoff 

approximation, for the same phase transition. 

One may also interpolate between the two prescriptions discussed so 

far, e.g. by taking b:l (Fig.lOg). Predictably, the location of both 

inVerSS COUpliWS B, ObtSined through b:l, A:1.05 lies between those for 

the corresponding couplings obtained throu& the Migdal and the Kadanoff 

recipes for the same A. 

Depending on the particular demands of the problem at hand, one may 

adjust A, (and even d, by a small amount) to establish contact with 

known results. Even if no critical couplings are available, we may 
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still see that the variability of such results with respect to adjusting 

these parameters is not too large so as to cast doubts on their 

reliability. For the purposes of the problem investigated here, we are 

led to choose the Migdal formula, since its optimal A is reasonable in 

the sense that it does not require excessively long iteration sequences. 
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TABLE I. 

Peaks of the heat capacity c for the trial runs performed. The location of the peak 
(coordinates of the phase transition point) is given by (kcc, (tic,, Rc, ). x denotes 
a cusp,0 a peak, and U a very wide bump. + indicates that the peak and the cusp are hard 
to resolve. 

c SHAPE HEIGHT 
F 'A '3 8 

1.75 
1.80/ 

0. 
.lO 
.20 
.23 
.25 
.3o 
.35 
.40 
.42 
.50 
.75 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
.75 
.50 
.3o 
.25 
.20 
.lO 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

.83 

.82/>1.89° o/x 

.82/>1.28 o/x 

.81/1.17 O/X 

.81/1.08 o/x 

.81/.92 o/x 

.81/.84 o/x* 

.77 0 

.75 0 

.69 o 

.58 o 

.50 0 

.57 0 

.67 0 

.80 0 

.84 U 

.89 U 
1.02 U 

.82/1.26 o/x 

.80/.91 o/x 

.78/.82 o/x 

.72 x 

.64 x 

.46 x 

.60 x 

.73 x 

.93 x 

1.951 
2.00/1.75 
2.1011.82 
2.25/2.10 
2.45 
2.80 
3.00 
3.00 
2.70 
2.40 
2.00 
1.65 
1.35 
1.25 
1.20 
1.03 

0. 1. .15 
0. I. .25 
0. 1. .3o 
0. 1. -40 
0. 1. .50 
0. 1. 1. 
0. .50 1. 
0. .25 1. 
0. 0. 1. 

2.10/2.25 
2.95/3.10 
3.55/3.7c 
5.20 
6.40 
9.00 
9.50 
13.80 
16.50 

'F 'A c3 P, SHAPE HEIGHT 

1. 0. 2. .32 x 9.00 
1. 0. 1. .53 X 6.00 
1. 0. .50 .73 0 3.20 
1. 0. .25 .95 0 1.92 
1. 0. .15 1.08 U 1.47 
1. 0. .05 1.20 U 1.08 

1. 1. 1. .33 X 5.30 
1. .6 .8 .41 X 4.70 
1. .8 .6 .41 x 4.00 
1. .25 .97 .44 x 5.50 
1. .97 .25 .42 0 3.00 
1. .99 .15 .46 o 2.70 

.25 

.20 

.15 

2. 
2. 
2. 
1. 
1. 

1. .25 
1. .15 
1. .lO 

1. .50 
1.30 .40 
.50 .o3 
.lO .lO 
-.lO .02 

.67 

.-m/.81 i/x* 

.80/ ~0 o/x 

4.70 
3.20/3.30 
2.3412.39 

.28 0 2.45 

.27 x 2.50 

.41 U 1.30 

.96 U 1.40 
>1.80 u .80 
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TABLE II. 

Four typical renormalization trajectories for the couplings. In each trajectory 
the first entry represents the initial (bare) values for the couplings, and the 
second entry represents the values after the first iteration; subsequently, we 
give the values after AN (2, 5, 10 ) successive iteration intervals. The 
last four points of the third trajectory have been patched in from a nearby one. 

Trajectory Number;AN P, P, P3 b-4 

1 i 2 1.200 .I00 0. 
1.256 .058 -.003 
1.338 -.025 .OOl 
1.362 -.097 .017 
1.327 -.I37 .032 
1.247 -.151 .039 
1.138 -.144 .038 
1.011 -.127 .032 
.877 -.105 .024 
.735 -.087 .016 
.596 -.058 .OlO 
.456 -.037 .005 
.322 -.020 .002 
.201 -.007 0. 
.102 -.002 0. 
.039 -0. -0. 
.OlO -0. 0. 
.OOl -0. -0. 

0. 
-.OOl 
-.004 
-.008 
-.OlO 
-.OlO 
-.009 
-.006 
.OOl 
-.002 
-.OOl 
-0. 
-.OOl 
-0. 
-0. 
-0. 

0. 

2 ; 2 .400 .580 
.415 .566 
.445 .518 
.47l .447 
.486 .359 
.483 .264 
.453 .I69 
.391 .092 
.299 .040 
.1g4 .012 
.lOl .002 
.038 -0. 
.009 -0. 
.OOl -0. 

0. 
-.007 
-.019 
-.02? 
-.031 
-.029 
-.020 
-.Oll 
-.004 
-.OOl 
-0. 
0. 

-0. 
-0. 

-.o 10 
-.021 
-.022 
-.017 
-.Oll 
-.004 
-.OOl 
-0. 
0. 
0. 
0. 
0. 
0. 



Trajectory Number; AN PF -- 
3 ; 5 0. 

same (3) ; 10 

.064 .916 .829 
1.080 2.015 .895 
4.779 2.873 -.165 
5.095 2.857 -.260 
5.306 2.843 -.327 
5.514 2.819 -.395 
5.729 2.792 -.467 
5.943 2.622 -.545 
6.169 2.500 -.624 
6.403 2.389 -.705 
6.614 2.218 -.77o 
6.842 2.059 -.842 
7.089 1.907 -.922 
7.328 1.720 -.99'1 
7.600 1.543 -1.085 
7.735 1.230 -1.082 
7.915 .947 -1.104 
8.107 .661 -1.127 
8.286 .364 -1.135 
8.490 .046 -1.153 
8.571 -.255 -1.082 
8.539 -.515 -.929 
8.542 -.782 -.793 
8.558 -1.067 -.653 
8.498 -1.297 -.462 
8.283 -1.375 -.200 
8.096 -1.478 .056 
7.576 -1.501 .495 
6.957 -1.388 .693 
6.314 -1.252 .732 
5.676 -1.116 .580 
5.034 -.981 .498 
4.396 -.839 .416 
3.745 -.708 .337 
3.094 -.570 .258 
2.438 -.431 .179 
2.143 -.351 .135 
1.510 -.237 .081 
.817 -.097 .022 
.152 -.005 0. 

same(patched); 10 
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h 
.800 -' 

--__. 
.800 

-.032 
-.395 
-.390 
-.371 
-.372 
-.37o 
-.366 
-.298 
-.251 

-.209 
-. 146 
-.087 
-.028 
.042 
.116 
.208 
.296 
.385 
.470 
.569 
.612 
.593 
.582 
.546 
.515 
.349 
.I96 
-.121 
-.298 
-.353 
-.259 
-.219 
-.184 
-.143 
-.106 
-.070 
-.050 
-.026 
-.006 
-0. 

4 i 5 0. 1.100 0. - 
0. 1.172 .OOl -.035 
0. 1.484 .OIO -.I89 
-.OOl 1.564 .015 -.248 
-0. 1.485 .015 -.243 
0. 1.358 .013 -.218 
-.OOl 1.211 .Oll 187 
-.002 1.045 .OlO x153 
-0. .847 .005 -.lll 
0. .599 .002 -.063 
0. .290 0. -.017 
0. .042 0. -0. 
0. .0002 0. -0. 

p4 
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FIGURE CAPTIONS 

FERMILAB-Pub-82/39-THY 

Fig. 1 me phase boundary surfaces in the positive 8,,8,,B3 octant, 

consistent with our trial runs. 

me almost flat surface demarcated by STXW is intersected 

by the SPCM plane EOB along the line XZ. It also intersects 

the SPCM slanted cone, whose apex is at the origin, along the 

curve SYU. 'ihis curve is tangent to the line XZ at Y, and in 

fact the cone is tangent to the plane EOB along the line OYG. 

me XZW portion of the surface is characterized by peaks 

in the specific heat, while the YXTU portion is characterized 

by cusps. me "window" bounded by this curve SZYU is 

characterized by very wide bumps in the specific heat and is 

believed to indicate absence of a phase boundary. 

me surface XZW continues down to WXV, also characterized 

by peaks in the specific heat. In contrast, the surface WXRQ 

is defined by cusps. me points R and Q are meant to extend 

indefinitely out along CA, towards the Z2 phase transition. 

See Appendix A for quantitative details. 

We are also depicting a typical renormalization trajectory 

which starts from (0,.8,.8), moves off the figure, curves back 

near (8.6,-l.l,-.7), and returns through the window, to reach 

the origin on a universal path close to the 8F axis, i.e. the 

Wilson action. 



-38- FERMILAB-Pub-82/39-THY 

Fig. 2 me Free Energy per plaquetteF, for z-(.1,1,0). 

Fig. 3 Ihe average plaquette action - <Sp/8>, for z=(.l,l,O). 

Fig. 4 'lhe heat capacity density & for b: a) (.l,l,O), a typical peak 

(01; b) (0,.25,1), a typical cusp (x1; c) (0,1,.15), a typical 

peak-cusp doublet (o/x), defining two different phase 

boundaries; d) (1,.25,0), illustrative of the wide bumps (U) 

which indicate absence of a phase boundary, predicated on the 

Monte Carlo results. 

Fig. 5 Ihe B3=0 subspace of Fig.1. me dashed line represents the 

phase boundary obtained through Monte Carlo techniques by 

!&anot and Creutz. Our scaling parameter has been adjusted to 

X=1.1 so that the SO(3) transition coupling coincides with .83; 

no other adjustments are made. For sufficiently large 8,, the 

point Q demarcates the Z2 phase transition. me point S 

represents the location of the heat capacity peak of the Wilson 

action, and it lies on the continuation of the first order 

phase boundary WZ. me critical point 2 lies very near the 

SPCM line OB. 

Fig. 6 'lhe 8,=0 subspace of Fig.1. lhe phase boundary resembles that 

of Fig. 5, except that here there is no window: the phase 

surface continues all the way to T on the spin 3/2 axis. For 

large B, the point R represents the Z,critical coupling 

predicted by self-duality. To the right of the line OE, the 

center is not involved in the SPCM's. 

Fig. 7 lhe 8,=0 subspace of Fig. 1. me phase boundary terminates at 

OP near U, on the SPCM line OD, so that SU represents part of 

the window on the boundary surface, and corresponds to ZS of 
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Fig. 5. 

Fig. 8 me renormalization trajectories which start on the 83~0 plane 

of Fig. 5, projected onto that plane. lhe trajectories curve 

around the phase boundary and are driven to their appropriate 

stable fixed line: the Major [SU(2)] fixed line has slope - 

-. 16, while the Minor [SO(3)] fixed line is pretty much aligned 

to the 8, axis. lhe trajectory starting in the apparently 

isolated phase bounded by VW and WQ does not in fact cross the 

phase boundary. Instead, it develops a substantial component 

of spin 2, and curves around to join the adjoint axis for BA*s 

smaller than = .80. 

Fig. 9 'Ihe evolution of the effective couplings 8F,8A~10, and $x10 

versus inte ration number N, for the three trajectories 

starting at (B,,B,,B3): (1.2,.1,0) x, (1.5,0,0) 0 , and 

(.8,.25,O)e,respectively. Coalescence of all 83 components 

occurs at a scale too small to depict. me large N behavior is 

consistent with the strong coupling result, while the rou@ly 

straight portions of 6, and BAXIO exhibit approximate 

perturbative scaling - see Sec. 5. 

Fig. 10 C versus 8 for ;:(.23,l,O) and varying recursion step parameters 

b and A. lhe critical inverse couplings EC are specified for 

each case. a) bz0, X:1.05; b) b:O, X=1.10: this is the Migdal 

prescription used consistently throughout this work; c) b=O, 

Az1.15; d) b:2,A=1.03; e) bz2, X=1.05; f) b-2, X:1.10; g) b:l, 

X=1.05. Note that the vertical scale is compressed in Figs. b) 

and c). 
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